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Martin-Löf’s type theory. Introductory remarks
The theory of types with which we shall be concerned is
intended to be a full scale system for formalizing
intuitionistic mathematics as developed, for example, in
the book by Bishop. (Martin-Löf 1973)

Martin-Löf’s type theory is a system of logic for constructive
reasoning about mathematics.

Standard references are Martin-Löf Intuitionistic Type Theory
(Naples 1984) and Nordström et al. Programming in Martin-Löf
Type Theory (Oxford 1990).

The system has mainly interested constructive logicians and
computer scientists.

More recently it has gained prominence as the ‘type theory’ of
‘Homotopy Type Theory’.
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Martin-Löf’s type theory. More introductory remarks

Characteristic features:

I It is an interpreted formalism. Martin-Löf pays much attention
to explaining the meaning of the primitive notions.

I The doctrine of types: any object belongs to a type. It is
intrinsic to an object which type it belongs to.

I The Curry-Howard isomorphism: propositions are types. If A
is a proposition, then the objects of type A are the proofs of A.

I Extension of the Gentzen-programme: the meaning of (most
of) the primitive symbols is determined by their occurrence in
formation, introduction, elimination, and equality rules.

• The equality rules are rules of computation, or of reduction in
the sense of Prawitz.

I A distinction is drawn between judgements and propositions.
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Forms of categorical judgement

There are two basic forms of statement:

a : A a is an object of type A.

a = b : A a and b are the same objects of type A.

Since a proposition is a type, it is clear that these statements a : A
and a = b : A cannot be propositions.

Martin-Löf has introduced the term ‘judgement’ (which is here not
to be understood psychologically).

A proposition is true if it has a proof. Hence, if A is a proposition,
a : A says in effect that A is true. (We reserve the term ‘proof’ for
such objects, or terms, a.)

The judgement a : A may be compared with Frege’s ` A, where A
is a judgeable content.
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Judgemental vs propositional identity

The logical operators ∧, ∨, ⊃, and ¬ operate on propositions, and
∀ and ∃ on propositional functions.

An identity statement a = b : A is not a proposition, but a
judgement, whence the logical operators are not applicable to it.

It is clear that in order to be able to express mathematics in the
system, also identity propositions are needed.

Thus, we need a function Id which when applied to suitable
arguments yields an identity proposition.

In particular, the function Id is to take a type A and two objects a
and b of type A and yield a proposition Id(A, a, b).

Exploiting Currying, we think of Id(A) as a binary propositional
function over A.
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Judgemental identity: why is it needed?

An identity proposition Id(A, a, b) is formed by applying a
propositional function Id(A) to suitable arguments a and b.

The propositional function Id(A) has a certain domain A.

We thus have the following order of conceptual priority:

domain→ prop. function→ proposition

But, to speak of a domain A, it must be clear what it is for
elements of A to be the same elements of A.

For instance, it is implicit to our grasp of Q that 3
4 and 6

8 are the
same Q’s.

The identity constitutive of a domain A can therefore not be
propositional.
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Judgemental identity: why is it needed? Contd.

Cantor in his definition of Mannigfaltigkeit from 1882 requires that
it should be determined whether

two objects belonging to the manifold are, in spite of
formal differences in the mode of givenness, equal to one
another, or not.

Bishop makes a similar requirement in his definition of set.

In Martin-Löf’s type theory to define a type A it must be laid down
what it is for elements of A to be equal.

Laying down when elements of A are equal cannot be done by
means of the propositional function Id(A).

It is done by means of identity judgements, a = b : A.
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Judgemental identity. Some properties

Judgemental identity a = b : A satisfies rules of reflexivity,
symmetry, and transitivity; as well as rules of substitution.

Moreover, the equality rules associated with the primitive symbols
are in effect non-trivial rules governing judgemental identity.

The equality rules say how certain functions are computed. We get
equalities such as

fst(pair(a, b)) = a : A
ap(λ(f ), a) = f (a) : B

We may regard a = b : A as saying that a and b are equal terms in
a rich typed lambda-calculus.

Judgemental identity is sometimes called definitional equality and
also intensional equality.
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Propositional identity: formation rule

An identity proposition has the form Id(A, a, b).

The A cannot be any type. It must be what is called a set in
Martin-Löf type theory. I shall write set.

A set is not a set in the sense of axiomatic set theory, but rather in
the sense of an individual domain.

Thus we distinguish types of individuals and higher types, or
function types. A set is a type of individuals.
(I shall not go into the details of the type hierarchy of MLTT here.)

If A is a set, a : A, and b : A, then Id(A, a, b) is a proposition.

A : set a : A b : A
Id(A, a, b) : prop

(Id-form)
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On introduction rules
A proposition A is a set the elements of which are the proofs of A.

We can assert that A is true if we have demonstrated a : A.

The conclusion of an introduction or elimination should therefore
have the form a : A, rather than the simpler form ‘A’ as in Gentzen.

Hence in giving these rules we need to specify the form of the
proof-term a in the conclusion a : A.

E.g., the introduction rule associated with ∧ has the form

a : A b : A
pair(a, b) : A ∧ B

In general, the form of the proof-term occurring in the conclusion
of an introduction rule for a logical operator follows the
BHK-interpretation.
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Propositional identity: introduction rule

Gentzen and BHK cover only complex propositions.

Since Id(A, a, b) is atomic a new idea is needed in giving an
introduction rule for Id.

It is clear that Id(A, a, a) is true provided it is well-formed.

From the rules governing judgemental identity we can infer
c : Id(A, a, b) from c : Id(A, a, a) and a = b : A.

Hence we decide on the following introduction rule:

a : A
r(A, a) : Id(A, a, a)

(Id-intro)

Thus we stipulate that provided a : A there is a proof r(A, a) of the
proposition Id(A, a, a).
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Intro- and elim-rules for inductively defined predicates I
Martin-Löf (1971) provided a general schema for introduction and
elimination rules for inductively defined predicates.

The simplest form of introduction rule is

Qq(t) . . . Rr(t)

Pp(t)

E.g., we could introduce a predicate N by the two rules

N0
Nt
Nst

Thus, we simultaneously introduce the predicate N, the constant
0, and the function s.

We shall be more interested in a predicate E introduced by

Ett
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Intro- and elim-rules for inductively defined predicates II

The elimination rule for a predicate P is to have the form

Pt minor deductions

F (t)

Associate with each of the predicates P, Q,. . . , R occurring in the
introduction rule a new formula letter, F (v), G (v),. . . , H(v)
respectively.

Among the minor deductions there is to be for each introduction
rule for P a deduction of the form

G (q(x)) . . . H(r(x))
. . . . .

.

F (p(x))
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Intro- and elim-rules for inductively defined predicates III
For N this yields

Nt F (0)

F (x)

...
F (sx)

F (t)

For E introduced by the axiom Ett we get

Etu F (x , x)

F (t, u)

If we take F (v ,w) to be of the form F ′(v) ⊃ F ′(w), the following
rule is derivable.

Etu F (t)

F (u)

Hence, E is identity.
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Propositional identity: elimination rule
The elimination rule for Id should be similar to that for E :

Etu F (x , x)

F (t, u)

The major premiss of Id-elimination will have to be p : Id(A, a, b).

The minor deduction for E is a proof of F (x , x) with x free.

Thus we have a function of type

f : (x : A)F (x , x)

We get

p : Id(A, a, b) f : (x : A)F (x , x)

idel(p, f ) : F (a, b)
(Id-elim)

Note. The rule can be generalized by assuming the typing

F : (x : A)(y : A)(z : Id(A, x , y))prop
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On equality rules
In the equality rules one can recognize reductions in the sense of
Prawitz. Thus,

Π
A

Π′

B
A ∧ B
A

 Π
A

gives rise to
fst(pair(a, b)) = a : A

Likewise,
A
Π
B

A ⊃ B
Π′

A
B

 

Π′

A
Π
B

gives rise to
ap(λ(f ), a) = f (a) : B

: 16



Propositional identity: equality rule
The conversion for the identity predicate E is

Ett
Π

F (x , x)

F (t, t)

 
Π[t/x ]

F (t, t)

Recall Id-introduction

a : A
r(A, a) : Id(A, a, a)

And Id-elimination

p : Id(A, a, b) f : (x : A)F (x , x)

idel(p, f ) : F (a, b)

It is clear that Id-equality then must be

idel(r(A, a), f ) = f (a) : F (a, a)
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Judgemental vs propositional identity, again

The following rule is derivable:

a = b : A
r(A, a) : Id(A, a, b)

In Martin-Löf (1984) Id-elimination is given as

p : Id(A, a, b)

a = b : A
(Ext-id)

This rule is difficult to justify, and accepting it makes
type-checking undecidable.

(Ext-id) is not derivable from Id-elim. Without (Ext-id) there is
thus in general no way of inferring a = b : A from p : Id(A, a, b).

The two notions of identity thus differ in logical strength.
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Frege’s Basic Law V

Frege’s Basic Law V is

λ(f ) = λ(g)⇐⇒ ∀x(f (x) = g(x))

This is problematic when the terms on the LHS are taken to lie in
the range of the quantifier on the RHS.

In MLTT the principle would be stated as

Id(A→ B, λ(f ), λ(g))⇐⇒ (∀x : A)Id(B, f (x), g(x))

Martin-Löf remarks that even this formulation is problematic:

I The ⇒-direction follows from Id-elimination;

I but, the ⇐-direction is not justified.
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Basic Law V, left to right
Let us first consider

Id(A→ B, λ(f ), λ(g))⇒ (∀x : A)Id(B, f (x), g(x))

Define a relation R(v ,w) on A→ B by

R(v ,w) ≡ (∀x : A)Id(B, ap(v , x), ap(w , x))

Then R is clearly a reflexive relation on A→ B.

Hence, if Id(A→ B, λ(f ), λ(g)) is true, then so is R(λ(f ), λ(g)).
By definition this is the same proposition as

(∀x : A)Id(B, ap(λ(f ), x), ap(λ(g), x))

But this, in turn, is the same proposition as

(∀x : A)Id(B, f (x), g(x))

owing to the ⊃-equality rule, ap(λ(f ), y) = f (y) : B.
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Basic Law V, right to left
The converse

Id(A→ B, λ(f ), λ(g))⇐ (∀x : A)Id(B, f (x), g(x)) (Vii)

is, however, not justified by the Id-rules. (Appropriately
formulated, this converse is called function extensionality.)

This can be shown model-theoretically. One can give a
proof-theoretic argument along the following lines.

By normalization considerations one sees that in a derivation of
(Vii) one would need to prove the higher-type judgemental identity
f = g : (A)B with only (∀x : A)Id(B, f (x), g(x)) as open
assumption. But, that the latter holds provides no guarantee that
f and g are equivalent terms. One counterexample is

f = [x : A× B]x
g = [x : A× B]pair(fst(x), snd(x))
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A valid form of Basic Law V

A form of Basic Law V that is justified in MLTT is obtained by
replacing the propositional identities with suitable judgemental
identities.

Now the propositional connective ⇐⇒ will not be applicable, so we
instead get a pair of inferences:

f = g : A(B)

λ(f ) = λ(g) : A→ B

λ(f ) = λ(g) : A→ B

f = g : (A)B

These are valid on grounds of the rules of ⊃-intro, ⊃-equality, and
η-conversion.
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